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Abstract

Using the theoretical framework introduced in a previous work (Negahban, M., 1997. Thermodynamic modeling
of the thermomechanical e�ects of polymer crystalliation: A general theoretical structure. International Journal of
Engineering Science 35, 277±298), a model is proposed for capturing the thermomechanical response of natural

rubber during and after crystallization. The model is given in a form which will allow the incorporation of both the
known mechanical response and the known thermal response observed before, during, and after crystallization in
natural rubber. In particular, one can include in this model known experimental results characterizing the stress

relaxation due to crystallization, increase in rigidity with crystallization, heat capacity, heat of crystallization, and
the melting temperature. In this ®rst article, a basic overview is presented of the model, and the thermal expansion
of the amorphous and crystalline phases of natural rubber are incorporated into the model. The speci®c form of the

free energy used to characterize the response of natural rubber is presented in the following articles. # 2000 Elsevier
Science Ltd. All rights reserved.

Keywords: Natural rubber; Crystallization; Continuum modeling; Non-isothermal; Thermomechanical modeling; Thermodynamics;

Phase transition; Kinetics of crystallization; Stress relaxation

1. Introduction

Interest in crystallization of polymers, and in particular natural rubber, has a long history. This
interest was motivated by the large thermal and mechanical e�ects associated with this phase transition.
The early works of Bekkedahl (1934) and, later, of Wood and Bekkedahl (1946) give a clear
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experimental description of the time dependant change in volume due to gradual crystallization as a
function of temperature in isothermal conditions. The early work of Treloar (1941) shows that the
change in volume, and hence crystallization, is strongly in¯uenced by stretching as he presents
experiments showing the change in density as a function of time for di�erent stretches. The work of
Gent (1954) clearly demonstrates that there is a linear relation between stress relaxation and volume
reduction (crystallization) in natural rubber. Leitner (1955) and, later, Stevenson (1983, 1989) clearly
demonstrate that crystallization has a strong e�ect on the elastic moduli of natural rubber, to the extent
of increasing it by a factor of several hundred.

Crystallization in natural rubber is a gradual phase transition which may occur over a large interval
of time and is accompanied by many thermomechanical events, as described above. In this and in the

Nomenclature

a Rate of crystallization in mass per unit time
b Mass fraction of amorphous material �� 1ÿ � tts a�s�ds)
B Left Cauchy stretch tensor (=FFT )
C Right Cauchy stretch tensor (=FTF)
F(t ) Deformation gradient at current time t
Fs(t ) Relative deformation gradient comparing the con®guration at time t to the con®guration

at time s
F�(t ) � 1

J 1=3�t�F�t�
F�s �t� � J 1=3�s�

J 1=3�t�Fs�t�
I1,..., I10 isotropic invariants of B(t ) and Bs(t )
I Second order tensor identity
J Volume ratio (=det[F])
JA Volume ratio of the amorphous polymer
JC Volume ratio of the fully crystalline polymer
L Velocity gradient �� ÇF�t�Fÿ1�t�)
p Indeterminate scalar associated with incompressibility
t Current time
ts Starting time of crystallization
T Cauchy stress tensor (true stress)
Z Entropy per unit mass
y Temperature
r0 Mass density in reference con®guration
r Mass density
rA Mass density of the amorphous polymer
rC Mass density of the fully crystalline polymer
save Average principal Cauchy (true) stress (=1/3 tr(T))
c Free energy per unit mass
cA(t ) E�ective free energy of the amorphous part
cC(t, s ) E�ective free energy at the current time of the crystals (or parts of crystals) formed at

time `s'
`@A' Partial derivative with respect to `A'
` _±' Material time derivative of overlined quantity
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following articles, a theoretical structure for modeling this phase transition is proposed and speci®c
material functions are evaluated to reproduce known experimental results. This proposed structure
models crystallization as a continuous process of transformation from one elastic solid to another.

The goal of these articles is to phenomenologically characterize the transition seen when amorphous
natural rubber transforms into a semi-crystalline material, by capturing in a single model the thermal
and mechanical events which accompany each stage of this gradual transformation. This is motivated by
the recent resurgence of interest to develop constitutive equations capable of capturing more accurately
the thermal and/or mechanical behavior of polymers under varying external conditions (Chew et al.,
1988; Ziabicki, 1996a; Ziabicki, 1996b; Ding and Spruiell, 1997; Phillips and Manson, 1997; Ho�man
and Miller, 1997), as is characteristic of most manufacturing and design conditions. In turn, this drive
may be fueled by an increase in computational capability that allows the simulation of more complex
processes.

The model proposed in this article is based on using a mathematical structure introduced by
Negahban (1997). This structure captures the e�ects of crystallization by modeling the polymer at each
stage of its transformation as a composite of an amorphous phase and an array of di�erent crystals.
The current free energy, c(t ), of this composite is modeled by

c�t� � b�t�cA�t� �
�t
ts

cC�t, s�a�s�ds, �1�

where b(t ) is the current mass fraction of amorphous material, a(s ) is the rate of crystallization at time
s, ts is the time crystallization starts, t is the current time, cA(t ) is the e�ective free energy per unit mass
in the amorphous fraction and cC(t, s ) is the e�ective current free energy per unit mass in the crystal
created at time s. Since it is assumed that there is no third phase in the material, the relation between
the fraction of amorphous material and the rate of crystallization is given by

b�t� � 1ÿ
�t
ts

a�s�ds: �2�

The e�ective free energy in the amorphous portion is assumed to be a function of the deformation
gradient, temperature and the extent of the amorphous material. This is written as

cA�t� � cyA�F�t�, y�t�, b�t��, �3�
where F(t ) is the current value of the deformation gradient, y(t ) is the current value of the temperature,
and `$' refers to the mathematical function describing this physical quantity.

The e�ective current free energy of the crystal created at time s is assumed to depend on the
conditions at the time of crystallization and the conditions imposed on the crystal since crystallization.
This is mathematically characterized by the expression

cC�t, s� � cyC �F�t�, y�t�, b�t�, F�s�, y�s�, b�s��: �4�
Similar assumptions to those presented in Eqs. (1), (3) and (4) are made for the expressions for stress

and for entropy, with the addition of an indeterminate scalar p(t ) associated with an assumption made
in regards to the incompressibility of each phase, as will be described in detail in a following section.

In addition to developing a model for the free energy of natural rubber, to obtain a complete model
one needs to provide a model for the unconstrained thermal expansion of the amorphous and crystalline
phases. One also needs to provide a model for the rate of crystallization and for the heat ¯ux. The way
in which one incorporates the information on thermal expansion into the model is described in Section
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3. The model for the rate of crystallization must depend on the history of the events occurring during
crystallization, and also must depend on the indeterminate scalar associated with the incompressibility
described in Section 3. This is described by

a�t� � ay
24 t

F�s�
s � ts

,
t
y�s�
s � ts

,
t
b�s�
s � ts

, p�t�
35: �5�

As is described in Negahban (1997), each of the constitutive models must satisfy the assumption of
material frame indi�erence, and also must be constrained to be consistent with the initial isotropy of the
undeformed amorphous material before crystallization.

It will be shown that within the proposed structure, in a single model one can capture both the
thermal and mechanical e�ects associated with crystallization of natural rubber. These e�ects include:

1. Thermal expansion of unconstrained natural rubber at constant crystallinity,
2. The melting temperature of unconstrained natural rubber,
3. The dependence of the melting temperature on pressure and extension,
4. Heat capacity of unconstrained natural rubber at constant crystallinity,
5. The heat of fusion for crystals of natural rubber at the melting temperature,
6. The initial rubbery response of the amorphous material,
7. The increase in elastic modulus during unconstrained crystallization of natural rubber,
8. Stress relaxation in stretched natural rubber during crystallization.

Also, as a result of the general structure of the model, one can relate or simulate thermal and
mechanical characteristics of crystallization under di�erent thermomechanical loading conditions. For
example, by simulating crystallization under stretch, one can evaluate the relation between residual
stretch and temperature, and, as a result, evaluate the e�ect of crystallization under stretch on the
anisotropic thermal expansion of natural rubber.

The model proposed in this article di�ers from the microstructural model proposed by Ahzi et al.
(1995) and Parks (1995) in that the current model attempts to characterize both the thermal and the
mechanical events occurring during the process of crystallization, but the mentioned microstructural
models only predict mechanical response after crystallization, and only when given the existing
microstructure. Unlike the proposed model, these models are not designed to predict the e�ects of
processing on the current response of the polymer. Yet, the microstructural model proposed by Ahzi et
al. (1995) and Parks (1995) are developed to predict the elastic±plastic response of a semi-crystalline
polymer after crystallization if one assumes the microstructure, a feature not included in the current
model. The current model also di�ers from many of the other phenomenological ®ts to experimental
results in that the current model incorporates the initial isotropic character of the undeformed
amorphous natural rubber as a constraint, it is consistent with continuum thermodynamics and it ®ts all
the di�erent thermal and mechanical results within a single model.

As in other polymers, crystallization in natural rubber occurs in the rubbery range of its material
response. This range is characterized at the lower limit by the glass transition temperature and at the
higher limit by the melting temperature. For natural rubber this range is from about ÿ508C to about
368C. As will be shown in the following articles, this range is not ®xed and changes with changes in
loading conditions. A recent review article by Magill (1995) provides an overview of the research
conducted to date on the response of natural rubber. Also, the books by Treloar (1975), Mandelkern
(1964) and Wunderlich (1973, 1976, 1980) contain invaluable information on crystallization of
polymers.
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2. Kinematics and notation

On a macroscopic level the kinematics of deformation of the material body is characterized by a
reference con®guration and a function describing the motion of each point in this con®guration. The
deformation gradient will be denoted by F, which is the ®rst gradient of this function with respect to
changes in position in the reference con®guration. Fig. 1 shows a schematic of three con®gurations:

(a) the reference con®guration k0,
(b) the current con®guration k(t ), and
(c) an intermediate con®guration k(s ).

Also, in this same ®gure is shown the deformation gradient at time t, F(t ), the deformation gradient
at time s, F(s ) and the relative deformation gradient comparing the change in con®guration between
time s and time t, Fs (t )=F(t )Fÿ1(s ), where the superscript `ÿ1' refers to the inverse. From each of these
deformation gradients one can obtain a left Cauchy stretch tensor B=FFT, and a right Cauchy stretch
tensor C=FTF, where the superscript `T' refers to the transpose. The velocity gradient will be denoted
by L � ÇFF

ÿ1
, where `�' denotes the material time derivative. The volume ratio J(s ) is the ratio of volume

of the neighborhood of a material point at time s to its volume in the reference con®guration, and is
calculated from the deformation gradient using J(s )=det[F(s )], where det[.] denotes the determinant
operation. The operator `�' between two vectors denotes the dot product. The operator `:' between
second order tensors A and B is de®ned as A:B=tr(ABT), where tr(.) denotes the trace operation. The
operation `@A' will denote the partial derivative with respect to `A', where `A' may be a scalar or tensor
quantity. For example, the partial derivative @A of the function f(A) of the single second order tensor
argument A will be de®ned by the relation

_f � @Af: ÇA: �6�

3. Assumption of incompressibility of each phase

It is common in the literature on polymer crystallization to directly relate the change in volume under
isothermal conditions to the extent of crystallinity (Gent, 1954). This is done by assuming each phase of

Fig. 1. Reference con®guration, intermediate con®guration, current con®guration, and kinematical variables.
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the polymer to be incompressible, therefore, allowing changes in volume to occur only when matter
transforms from one phase to the other.

Even though this is not an essential assumption, it allows one to simplify the resulting model by
clearly decoupling volumetric changes due to crystallization from the volumetric changes due to thermal
expansion. On the macroscopic level, the material is assumed to be a continuum that follows the basic
laws of continuum thermodynamics, and as a result must satisfy the law of conservation of mass. This
requires that the current mass density, r(t ), and the current volume ratio, J(t ), be related by the relation

r�t�J�t� � r0, �7�
where r0 is the mass density in the reference con®guration (for which the volume ratio is, by de®nition,
equal to unity).

At each material point on the macroscopic scale (the continuum scale), one may have both
amorphous rubber and crystalline rubber. Each one of these two phases is assumed to obey a similar
law of conservation of mass as the macroscopic continuum, but with the stipulation that the volume of
each phase is controlled entirely by temperature. The result is that each phase of the material becomes
incompressible if the temperature is held constant. Therefore, in isothermal processes volume change on
the macroscopic level may be accommodated only through phase transition. The relation between the
density and volume ratio of each phase will be

rA�y�JA�y� � rA0
, rC�y�JC�y� � rC0

, �8�

where rA(y ) and rC(y ) are the densities as a function of temperature of the amorphous and crystalline
rubber, respectively, JA(y ) and JC(y ) are the volume ratios as a function of temperature of the
amorphous and crystalline rubber, respectively, and rA0

and rC0
are the densities at the reference

temperature (in the reference con®guration) of the amorphous and crystalline rubber, respectively.
Following the preceding assumptions and the hypothesis that at each material point, the total

macroscopic volume is the sum of the volume of the amorphous part and the crystals, one will arrive at
the relation

1

r�y, b� �
1

rA�y�
b� 1

rC�y�
�1ÿ b�, �9�

where r(y, b ) is the macroscopic density. Invoking conservation of mass, as given in Eq. (7), one
obtains

J�y, b� � r0
rA�y�

b� r0
rC�y�

�1ÿ b�, �10�

where J(y, b ) is the macroscopic volume ratio. Introduction of Eq. (8) results in

J�y, b� � r0
rA0

JA�y�b� r0
rC0

JC�y��1ÿ b�: �11�

Since J = det(F), Eq. (10) is a restriction on how F may change. The relation between the rate of
change of volume, crystallinity and temperature is obtained by taking the derivative of Eq. (10) to get

_J � ÿ
"
r0b
r2A

drA

dy
� r0�1ÿ b�

r2C

drC

dy

#
_yÿ

� r0
rA

ÿ r0
rC

�
a, �12�

or one can rewrite this in the form
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_J �
"
r0b
rA0

dJA

dy
� r0�1ÿ b�

rC0

dJC

dy

#
_yÿ

� r0
rA0

JA ÿ r0
rC0

JC

�
a, �13�

where use is made of the relation

_b�t� � ÿa�t�: �14�
For natural rubber, one can use the following approximate expressions for JA(y ) and JC(y ):

JA�y� � 1� dJA

dy
�yÿ y0� �15�

and

JC�y� � 1� dJC

dy
�yÿ y0�, �16�

where y0 is the reference temperature. The values provided by Van Krevelen and Hoftyzer (1976) for
y0=2988K yields

dJA

dy
� 6:249� 10ÿ4 1=K,

dJC

dy
� 3:132� 10ÿ4 1=K: �17�

For natural rubber, one can take r0 � rA0
� 910 kg=m3 and rC0

� 1000 kg=m3: Fig. 2 shows the
volume ratio (evaluated relative to the volume at 2988K) as a function of temperature for natural
rubber. Each graph represents a di�erent constant degree of crystallinity. During a normal cooling
process, which includes crystallization, the volume ratio would actually be changing more rapidly as the
material crystallizes and, therefore, moves from the curve for one degree of crystallinity to another. As
can be seen, the volume changes due to crystallization are comparable to those associated with thermal
expansion.

4. The constraints on the free energy

As described in Negahban (1997), the model for the free energy must satisfy the constraints imposed
upon it by material frame indi�erence and also by the initial isotropy of the undeformed amorphous
rubber before crystallization. The result of imposing these restrictions is that the model for the free

Fig. 2. Volume ratio as a function of temperature for natural rubber at di�erent degrees of crystallinity.
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energy must be of the form

cA�t� � cyyA �I1, I2, I3, y�t�, b�t�, p�t�� �18�

cC�t,s� � cyyC �I1, . . . , I10, y�t�, y�s�, b�t�, b�s�, p�t��, �19�
where

I1 � tr�B�t��,

I2 � tr�B2�t��,

I3 � tr�B3�t��,

I4 � tr�Bs�t��,

I5 � tr
�
B2
s �t�

�
,

I6 � tr
�
B3
s �t�

�
,

I7 � tr�B�t�Bs�t��,

I8 � tr
�
B�t�B2

s �t�
�
,

I9 � tr
�
B2�t�Bs�t�

�
,

I10 � tr
�
B2�t�B2

s �t�
�
: �20�

I1,..., I10 represent the ten isotropic invariants of the two tensors B(t ) and Bs (t ). As a result of the
constraint introduced in the last section, volumetric changes are either a result of thermal expansion or
of phase transition. As such, they should not in¯uence the free energy. To avoid unnecessary
complications, without loss of generality, one can replace the above set of invariants given in Eq. (20)
by ones constructed from deformation gradients which have had the volumetric changes extracted from
them. To this end, the deformation gradients F�(t ) and F�s �t� will be introduced which are obtained from
the deformation gradients F(t ) and Fs (t ) by the relations

F��t� � 1

J 1=3�t�F�t�

and

F�s �t� �
J 1=3�s�
J 1=3�t�Fs�t�: �21�
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Without any loss of generality, one can replace I1,..., I10 in Eq. (20) by I �1, . . ., I �10, which are obtained
by replacing in Eq. (20) the tensor B(t ) by B�(t )=F�(t )F�T(t ) and Bs (t ) by B �s �t� � F �s �t�F�Ts �t�:

The entropy production inequality, also known as the Clausius±Duhem inequality, requires that at
each material point, one has

r _cÿ tr�TL� � rZ_y� 1

y
q � gR0 �22�

for every possible process, where Z is entropy density, T is the Cauchy stress tensor, q is the heat ¯ux,
and g is the temperature gradient. Imposing this constraint on the material response results in the
relations

T�t� � p�t�I� r�t�
(
b�t�@F�t�cA�t� �

�t
ts

�
@F�t�cC�t, s� � @Fs�t�cC�t, s�FÿT�s��a�s�ds)FT�t�, �23�

Z�t� � ÿb�t�@y�t�cA�t� ÿ
�t
ts

@y�t�cC�t, s�a�s�dsÿ p�t�
"

b�t�
r2A�t�

drA

dy
� 1ÿ b�t�

r2C�t�
drC

dy

#
, �24�

ÿx�t�a�t�R0 �25�
and

ÿr�t�x�t�a�t� � 1

y�t�q�t� � g�t�R0, �26�

where p(t ) is an indeterminate scalar resulting from the incompressibility assumption presented in
Section 3 and x(t ) denotes the current value of the `thermodynamic force of crystallization' given by

x�t� � cA�t� ÿ cC�t, t� � b�t�@b�t�cA�t� �
�t
ts

@b�t�cC�t, s�a�s�dsÿ p�t�
�

1

rA�t�
ÿ 1

rC�t�
�
: �27�

Since the indeterminate scalar p does not, in general, have any physical meaning, it is appropriate to
replace it by a more physically based quantity. This will also shorten the expressions derived in the
following papers. The parameter selected to replace p is the average principal stress, save, given by

save � 1

3
tr�T�: �28�

The average principal stress is negative the hydrostatic pressure. Solving for p using Eq. (23) results in

p�t� � save�t� ÿ r�t�
3

(
b�t�tr�@F�t�cA�t�FT�t��� �t

ts

�
tr
�
@F�t�cC�t, s�FT�t��

�tr
�
@Fs�t�cC�t, s�FT

s �t�
��
a�s�ds

)
: �29�

This relation can be substituted into the above to eliminate p in favor of the more physically based
average principal stress.

It should now be noted that even though it is assumed that each phase of natural rubber is
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incompressible, after substituting Eq. (29) into Eqs. (23)±(26), one can see that both entropy and the
thermodynamic force of crystallization depend linearly on hydrostatic pressure. The coe�cient of the
hydrostatic pressure term in the expression for entropy is fully determined by the extent of
crystallization and knowledge of the thermal expansion of the amorphous and crystalline phases, while
the coe�cient of the hydrostatic pressure in the expression for the thermodynamic force of
crystallization is fully obtained from the knowledge of the current values of the density of the two
phases.

5. The proposed form of the free energy for natural rubber

Even though the general form of the free energy as described in the last section allows for arbitrary
dependence on the isotropic invariants of B�(t ) and B�s �t�, it is convenient to select a simpler
dependence. As will be shown in the coming articles, the following form for the free energy is su�cient
to describe all of the observed response for natural rubber. The aim is to select the simplest model
which will also capture all the observed behaviors.

The free energy for natural rubber in the following articles will be taken to be given by

cA�t� �
X2
i�0

Ai

ÿ
I �1 ÿ 3

�i �30�

and

cC�t, s� �
X2
i�0

Ci

ÿ
I �4 ÿ 3

�i
, �31�

where each Ai is a function of b(t ) and y(t ), and each Ci is a function of b(t ), b(s ), y(t ) and y(s ). There
are the following relationships between the invariants

I �1 �
1

J 2=3�t�I1, I
�
4 �

J 2=3�s�
J 2=3�t� I4, �32�

where, from Eq. (10), it is clear that J(t ) depends only on y(t ) and b(t ), and J(s ) only depends on y(s )
and b(s ). The invariant I1 is only a function of F(t ) and the invariant I4 is only a function of Fs (t ).
The following are the partial derivatives of the two invariants used in the model with respect to their

respective variables

@F�t�I1 � 2F�t�, @Fs�t�I4 � 2Fs�t�: �33�
Using the chain rule, one obtains

@F�t�cA�t� �
2

J 2=3�t�
�
A1 � 2A2

ÿ
I �1 ÿ 3

��
F�t�, �34�

@Fs�t�cC�t, s� � 2
J 2=3�s�
J 2=3�t�

�
C1 � 2C2

ÿ
I �4 ÿ 3

��
Fs�t�, �35�

and @F(t )cC(t, s )=0. Using these derivatives and substitution for p from Eq. (29) results in the following
expression for the Cauchy stress tensor
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T � save�t�I� 2r�t�b�t��A1 � 2A2

ÿ
I �1 ÿ 3

���
B��t� ÿ I �1

3
I

�
� 2r�t�

�t
ts

�
C1 � 2C2�I �4 ÿ 3�

�
�

B�s �t� ÿ
I �4
3

I

�
a�s�ds: �36�

Using Eq. (10), one can obtain the partial derivative of J(t ) with respect to y(t ) as

@y�t�J�t� � ÿ
"
r0b�t�
r2A�t�

drA

dy
�t� � r0�1ÿ b�t��

r2C�t�
drC

dy
�t�
#
, �37�

where rA(t ) and rC(t ) are functions only of current temperature. Starting from Eq. (32), using the chain
rule and noting that I1 and I4 are not explicit functions of temperature, one will have the relations

@y�t�I �1 �
2r0I

�
1

3J�t�

"
b�t�
r2A�t�

drA

dy
�t� � 1ÿ b�t�

r2C�t�
drC

dy
�t�
#

�38�

and

@y�t�I �4 �
2r0I

�
4

3J�t�

"
b�t�
r2A�t�

drA

dy
�t� � 1ÿ b�t�

r2C�t�
drC

dy
�t�
#
: �39�

Substitution for p from Eq. (29) into Eq. (24), introduction of the expressions for free energy given in
Eqs. (30) and (31), and use of the partial derivatives as given in Eq. (38) results in the expression for
entropy given as

Z�t� � ÿb�t�
X2
i�0

@Ai

@y�t�
ÿ
I �1 ÿ 3

�iÿX2
i�0

�t
ts

@Ci

@y�t�
ÿ
I �4 ÿ 3

�i
a�s�dsÿ

save

"
b�t�
r2A�t�

drA

dy
�t� � 1ÿ b�t�

r2C�t�
drC

dy
�t�
#
, �40�

where Ai[y(t ), b(t )] and Ci[y(t ), b(t ), y(s ), b(s )].
Using Eq. (10), one can obtain the partial derivative of J(t ) with respect to b(t ) as

@b�t�J�t� � r0
rA

ÿ r0
rC

, �41�

where rA and rC are functions only of temperature. Starting from Eq. (32), using the chain rule and
noting that I1 and I4 are not explicit functions of b(t ), one obtain the relations

@b�t�I �1 � ÿ
2r0I

�
1

3J�t�
�

1

rA

ÿ 1

rC

�
, @ b�t�I �4 � ÿ

2r0I
�
4

3J�t�
�

1

rA

ÿ 1

rC

�
: �42�

Substitution for p from Eq. (29) into Eq. (27), introduction of the expressions for free energy given in
Eqs. (30) and (31), and use of the partial derivatives as given in Eq. (42) results in the expression for the
thermodynamic force of crystallization to be given as
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x�t� �
X2
i�0

Ai

ÿ
I �1 ÿ 3

�iÿC0js�t � b�t�
X2
i�0

@Ai

@b�t�
ÿ
I �1 ÿ 3

�i�X2
i�0

�t
ts

@Ci

@b�t�
ÿ
I �4 ÿ 3

�i
a�s�dsÿ

save

�
1

rA�t�
ÿ 1

rC�t�
�
, �43�

where, as noted, in the second term on the right, C0 is evaluated at s=t.

6. Summary and conclusion

In this article, which is the ®rst in a series, a general description is provided of the model proposed
for capturing the thermomechanical response of natural rubber. This model is a speci®c example of a
more general model described in Negahban (1997). Eqs. (9)±(17) describe how one captures thermal
expansion in the model. Eqs. (30) and (31) describe the basic form used for modeling the free energy.
Eq. (36) presents the resulting expression for Cauchy stress. Eq. (40) provides the expression obtained
for entropy. Eq. (43) presents the resulting expression for the thermodynamic force of crystallization.

In the following articles, the material functions A0 to A2 and C0 to C2 will be ®t to known
experimental results. Invariants I �1 and I �4 were used intentionally, as opposed to I1 and I4, since
deformation histories which are restricted to equal triaxial extensions (pure volumetric deformations
only) produce for all processes I �1 ÿ 3 � 0 and I �4 ÿ 3 � 0, which automatically decouples material
functions. Most thermodynamic parameters, such as heat capacity, are assumed to measure response
under equal triaxial extensions. This is used in the next article to concentrate on evaluating A0 and C0

from the elementary thermodynamic parameters of heat capacity, heat of fusion, melting temperature,
and equilibrium crystallinity.

The third article concentrates on evaluating A1, A2, C1 and C2 from information on the mechanical
e�ects of crystallization. To evaluate these material functions, experimental results on the instantaneous
elastic response of the amorphous rubber are combined with results on the increase of elastic modulus
with crystallinity and stress relaxation due to crystallization.
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